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Baroclinic-type instability in a gas centrifuge 
heated from above 
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A baroclinic-type instability in a gas centrifuge heated from above is discussed. 
The instability is shown to be of overstable type, and estimates of the growth 
time scale and oscillation period of the unstable mode are given. 

1. Introduction and summary 
Let us consider flow in a gas centrifuge heated from above in which the equi- 

potentials of effective gravity are almost vertical, i.e. parallel to the axis of 
rotation 8. As is discussed by Barcilon & Pedlosky (1967), Homsy & Hudson 
(1969) and Sakurai & Matsuda (1974), there exists a steady state in which the 
Ekman layers on the top and the bottom pump a weak axial current and the 
thermal-wind effect causes an axially-differential rotation. In  this steady state 
the isentropic surfaces cross the equipotentials. Therefore we expect an insta- 
bility different in nature from the predominantly gravitational instability dis- 
cussed by Homsy & Hudson (1971) for a rotating Boussinesq liquid heated from 
below, and more like one of the various kinds of baroclinic instability studied in 
the meteorological literature. It is the purpose of the present paper to justify this 
expectation. 

To understand the basic properties of the expected instability, and to get an 
idea of how to formulate the idealized mathematical problem, we recapitulate 
the usual argument showing how baroclinic instability is possible on energetic 
grounds. Let us consider a virtual displacement by which fluid particle A in 
figure 1 is exchanged with B. Because A has a smaller density and a lower 
potential energy, the potential energy of the system is decreased by this dis- 
placement. The potential energy lost is available, assuming that the detailed 
dynamics allow it, for transformation into kinetic energy of an unstable dis- 
turbance. 

In  the usual baroclinic wave instability studied in meteorology (Bretherton 
1966; Charney 1947; Eady 1949; Green 1960; Hirota 1968; McIntyre 1970a; 
Pedlosky 1971; Tokioka 1971), the conditions a t  boundaries not parallel to 8 
can crucially affect the dynamics because of the importance of vortex stretching. 
The above energy argument, however, is relevant to other cases as well (Yanai 
& Tokioka 1969; McIntyre 1970b) and suggests possible local instability of other 
flow configurations in which the insentropes cross the equipotentials, and with 
dynamics not necessarily rotation dominated. Thus it seems reasonable to look 
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FIGURE 1. Schematic representation of a virtual displacement which is excited at  the cost 
of potential energy. Fluid particles A and B, in the hatched regions, are exchanged in this 
virtual displacement, and the potential energy of the system is transformed into kinetic 
ener,v of the motion. 

for a baroclinic-type instability in a gas centrifuge, neglecting in the first instance 
the (widely separated) top and bottom boundaries. 

Taking into account the above-mentioned property of the excitation mecha- 
nism, we idealize the problem as follows. Consider a steady state of a rotating 
gas in which a slight temperature gradient is imposed along the axis of rotation. 
We take into account the slight differential rotation caused by the thermal-wind 
effect. We neglect the weak axial flow pumped by the top and the bottom Ekman 
layers, because it is of order E* relative to the thermal-wind velocity, where E 
is the Ekman number and is small in practical cases ( E  = v/fiZH2, where v is the 
kinematic viscosity, i2 the angular velocity and H a typical dimension of the 
centrifuge). Our problem is to study the behaviour of an infinitesimal disturb- 
ance superposed on the above steady state. We assume that the axial compo- 
nent of the wavenumber vector is large in comparison with H-1. Therefore we 
neglect the presence of the top and bottom, and moreover approximate the 
basic state, for some purposes, by values on a certain equatorial plane perpen- 
dicular to the axis of rotation. To examine the effect of the side walls, we assume 
that the flow field is confined in an annular region with inner and outer radii 

and f2, respectively. Because we neglect viscosity, the boundary condition on 
the side walls is that the radial component of the velocity vanishes. For the sake 
of simplicity, and to emphasize the effect of compressibility, the radial density 
scale height is assumed to be small in comparison with the inner radius and 
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thickness F 2  - PI of the annulus. Finally, gravity and thermal conductivity are 
neglected. 

As will be clarified in the next section, our expectation that a baroclinic-type 
instability appears is justified by the solution of our idealized problem. From 
equation (35) and table 1 in § 2, we find that the instability is of overstable type 
(see, for example, Spiegel 1972), and that the growth time scale and the oscilla- 
tion period of the unstable mode are of the order of a second and a minute, 
respectively, for the standard centrifuge (i.e. one with height 1 m, radius 10 cm, 
mean temperature 20 "C, a temperature difference between the top and bottom 
of 10 "C, angular velocity 40000 r.p.m. and uranium hexafluoride as the working 
fluid). We do not have any available experimental data on the flow in a gas 
centrifuge. This may show that such data are classified as secret or that no 
reliable data have yet been obtained. Anyway, we believe that the fluctuations 
with a time scale of minutes observed in such a centrifuge may be identifiable 
with the wavy disturbances excited by the baroclinic-type instability. These 
wavy disturbances could take the form of small amplitude laminar motions and 
not handicap the efficiency of the centrifuge, provided that a certain threshold 
condition is satisfied. If this condition is violated, however, nonlinear interaction 
among waves becomes predominant, and eventually turbulent motion will 
result. In  such circumstances, the efficiency of the centrifuge will be reduced 
appreciably. The determination of this threshold condition and the examination 
of the details of the nonlinear motions is one of the important problems of the 
gas centrifuge, but is beyond the scope of the present paper. 

2. Analysis of the instability 
Let us introduce the following non-dimensional quantities : 

(1) 

(2) 
t is the time, ( r ,  8, x )  a rotating system of cylindrical co-ordinates whose angular 
velocity is S2 = (0 ,  0 ,  Q), (u, v, w) the velocity components in this system of co- 
ordinates, T the temperature, p the pressure, p the density and R the gas con- 
stant. The suffixes 0 indicate conditions at  a typical point ( r  = z = 0 )  in the flow 
field and the suffixes s denote a static reference state of rigid-body rotation (not 
the basic state for the instability). The tildes denote physical, dimensional 
quantities; Po is the temperature, taken as constant, of the reference state. 
Therefore f i S  and ps are expressed as follows: 

t = $/to, r = F/Z0,  2 = qz,, (u,v, w) = v;l (Z,v", G), 

T = qQ, P = @l#L P = PIPs, 
where to = a-1, vo = (R!F0)*, lo = vote, 

2% = P O P S ,  Ps = P O P S ,  Ps  = exp ( t r 2 ) ,  go = POR% (3) 
Assuming that a slight temperature gradient is imposed along the axis of 

rotation and an accompanying thermal wind exists in the basic state, we express 
this state, denoted by non-dimensional quantities with suffix B, as 

(4) 

21-2 

p = p g  = 1, p = P B  = 1-62, T = TB = 1 ~ 8 2 ,  

u = uB = 0,  v = vg = *8rz, w = wB = 0, 
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where - 
6 = {T(Z = I , )  - T(Z = O ) } / P ( Z  = 0) < 1, 

and terms 0(Sz ) - f  have been neglected. Because the existence of the axial tem- 
perature gradient and the thermal wind av,/az, i.e. the non-vanishing of 6, is 
crucial €or the excitation of the baroclinic-type instability, the terms propor- 
tional to 6 are retained in (4 ) .  In virtue of our neglect of the top and bottom 
boundaries [see also remarks below (12)] we assume that the time-dependent 
disturbance superposed on the basic steady state is of the form 

q = @(r)s ,  e = s,exp(imO+inz-wt), (6) 

where q refers to an arbitrary physical quantity, s1 is an amplitude parameter 
which we shall subsequently require to be infinitesimal with respect to 6, n is 
of order unity and m is an integer of order unity. 

Substituting the above expressions into the inviscid perfect-gas equations 
and picking out terms proportional to 6, i.e. linearizing, we obtain 

1 a(rp,a) im8 
0 =-up+-- + - + in8 (continuity), 

rPs ar r (7) 

o = - w a  - 20 + rG? + a j p ,  

0 = - w8 + 20, + im@/r + @r&, 
(8) 

(9) 

(10) 

(11) 

(momentum), 

0 = -w&+inlj, I 
0 = - u{p- ( y  - l)b}- ( y  - 1) &+ 8yt2 (adiabatic), 

= p + P  (state). (12) 

In  the above, the terms proportional to z have been neglected in comparison 
with those retained, an approximation valid in the neighbourhood of the 
equatorial plane x = 0. For example, (6z/rps)a(ps0,r)/ar has been neglected in 
comparison with (rps)-1i3(psi2r)/ar in ( 7 ) .  Another example is the neglect of 
6z& in comparison with 2i2 in (9). This approximation is consistent with our 
intention of looking for a local kind of baroelinic-type instability. 

Solving (9)-(12) for a, 8 , &  and G? gives 

Substitution of (13)-( 16) into (8) gives 

P=- -- - (17) 
A r(d@/dr) + ( in& w2 + 1 - 2im+w(4+wz)]  P9 Y1= Y ( 4  + 4 

+ Yl)  Y-1 r2 + Y1 

t Those remembering the notation ‘0’ imperfectly are recommended to read it as ‘a 
term of order at most. . .’. This will remind them that f = O(g)  means that I f 1  < Algl 
for some positive A as the limit is approached (Lighthill 1960). 
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Substitution of (17) into (13) gives 

(18) 
2 im+w(4+m2)  y-1 

4 r 2  + Yl) --]$I. Y 
Substitut.ion of (13)-( 17) into (7) gives us the following single equation: 

Motivated by the WKB method of approximation, let us apply the trans- 

( 2 3 )  
formation 

The resulting equation is 
q = ef. 

4 ( 3 - { - +  1 w1a2Ao 
4 ( l + w , ) 2  ( 2 4 )  

Let us assume here that w1 is of order 5-1, which will shortly be justified. Next, 
using the fact that S is roughly & and 5 is about 100 for the centrifuge referred 
to in $1, let us assume that 

d <  1, < - 1 q  1, t w o  < 1. ( 2 5 )  

The above fact is the basis for our assumption that the axial component of the 
wavenumber vector is large in comparison with H-1 and that the radial pressure 
scale height is small in comparison with r .  On the basis of (25), we can regard 
terms of order 8, <-l and <uo as infinitesimal. For example, (18) can be simplified 
as follows: 

Consistent with ( 2 5 ) ,  a is large in comparison with unity. Therefore the right- 
hand side of (24) can be neglected in comparison with the left-hand side. Assump- 
tions (25) are also used to simplify the second term on the left-hand side of (24). 
The solution of this approximated equation gives 

fj = exp ( - $3 ( A  expfo + B exp - f o L  (27) 
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where 

A2 = &+a2w1, P 2  = a2m2/n2 (29) 

and A and B are non-vanishing coefficients. 

normal component of the velocity) vanishes on r = rl and r2 gives 
Substitution of the solution ( 2 7 )  into the boundary conditions that u (the 

and we have neglected terms of small magnitude in accordance with (25 ) .  In  
the limiting case of a narrow gap, in which c1/E2 is expressed as 

gl/L = 1-812, €12 < 1, 

we can show that the solution of (30) is of the form 

h, = - - $ & i X  7 3 i f 0 ( € 1 2 ) .  (33) 

In view of this limiting form and the fact that the coefficients in (30) are all real, 
we can expect that the solutions of (30) are a pair of the complex conjugates 
one of which is in the second quadrant of the A, plane. We can obtain the solu- 
tion (in the second quadrant) from the following integral: 

where the prime means differentiation with respect to h and C is a contour 
encircling the expected location of the solution. The other solution can be ob- 
tained as the complex conjugate of (34). The integral is performed numerically 
along the contour shown in figure 2 ,  and the results are summarized in table 1 
and in figure 3. 

By substituting these results into the full expression for w ,  

we see that our simplifying assumption that w may be expressed by ( 2 2 )  and 
that w1 is of order 6-1 is self consistent. For m/n positive (or for m/n negative 
and h, replaced by its complex conjugate), the real part of the right-hand side 
is negative. By (6),  this means that the mode is unstable. Because A, is complex 
so is w .  This means that the unstable mode takes the form of a growing oscilla- 
tion, that is to say, the mode is of overstable type. The growth time and the 
oscillation period of the mode are of orders S-l and (ElS)-l, respectively, that is 
to say of orders (S!2)-1 and (E18!2)-1, respectively, in the original dimensional 
expression. 

Before concluding, it is to be noted that there exist a t  least two more cases of 
interest, which we purposely omitted for the sake of simplicity. These are that 
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- 1  
I - I 

1 

FIGURE 2. The contour in the A, plane along which the integral (36) is evaluated. Because 
there exist branch points of (hi + l)* and of (A2 + f, /E,)* at f i and f i, respectively, 
care must be taken in the calculation of these square roots. The plus sign on the contour 
is the expected location of the zero point. 

51/62 

1.00 
0.95 
0.9 
0-85 
0.8 
0.75 
0.7 
0.65 
0.6 
0.55 
0.5 

W(h1) 
- 0.25 
- 0.2417 
- 0.2349 
- 0.2282 
- 0.2207 
- 0.2127 
- 0.2041 
- 0'1950 
-0.1854 
- 0.1757 
- 0.1667 

TABLE 1 

$(A,) 
0,6614 
0.6548 
0.6453 
0.6365 
0,6277 
0-6182 
0,6079 
0.5969 
0.5851 
0,5725 
0.8578 

in which w2 N - 4, case 1, say, and that in which w2 N - (4 + r2(y - l)/y}, case 2. 
Case 1 corresponds to resonance with a typical inertial oscillation in the rotating 
fluid (Greenspan 1968). Case 2 corresponds to resonance with a local Brunt- 
VaisLlL oscillation in a radially stratified rotating fluid subject to a strong 
centrifugal force. As can be seen from (19), the simple method of treatment in 
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FIGURE 3. Real and imaginary parts of h, as functions of &/t2. Because h, is a complex 
number, o in (37) is also complex. That is to say, the mode is of overstable type. 

t,his paper, i.e. a straightforward simplification based on (25) and the appli- 
cation of the WKB method of approximation (without a turning point), can not 
be applied to these cases. Because our aim in this paper is to draw attention to 
the baroclinic-type instability in a gas centrifuge heated from above (not from 
below), we omit the discussion of these complicated cases. The analysis of these 
cases will be given elsewhere. 

This paper is dedicated to Professor Isao Imai in celebration of his sixtieth 
birthday. The author wishes to express his thanks to Professor Hidenori 
Hasimoto and Professor Isamu Hirota for valuable discussions. He is also 
indebted to Professor Sir James Lighthill and Dr Michael E. NcIntyre for 
valuable suggestions for improving the clarity of the manuscript. 
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